Reactivity of hexahydrocarbazol-4-ones in Michael reactions: stereocontrolled formation of decahydropyrido[2,3- d]carbazoles

Denise Dugat,* Nora Benchekroun-Mounir, Gérard Dauphin and Jean-Claude Gramain

Synthèse et Etude de Systèmes à Intérêt Biologique, UMR 6504, Université Blaise Pascal de Clermont-Ferrand, 63177 Aubière, France

The reactivity of hexahydrocarbazolones 3 and 7 in Michael reactions has been studied with several reagents: treatment with acrylonitrile, methyl acrylate and the Mannich base of methyl vinyl ketone leads to 4 a-substituted compounds $13-16$ in good yields ($65-93 \%$), as previously observed with nitroethylene. In contrast, unexpected tetracyclic carbazoles 17 and 18 are obtained with methyl vinyl ketone itself. Reductive cyclisation $\left(\mathrm{H}_{2}, \mathrm{PtO}_{2}\right)$ of 4a-cyanoethylhexahydrocarbazolones 13 and 15 affords decahydro-pyrido[2,3- d]carbazoles 20 and 21, potential intermediates in the synthesis of E-homo Aspidosperma alkaloids. Compounds 20 and 21 are isolated as single diastereoisomers with a C/E trans ring junction. \dagger

Introduction

The tricyclic hexahydrocarbazolone ring system is a common structural element of a large variety of indole alkaloids (e.g. aspidospermidine and vindoline) which belong to a class of biologically active compounds like vinblastine and vincristine. ${ }^{1}$

hexahydrocarbazolone

aspidospermidine
vindoline
Previous work in our laboratory has shown that transhexahydrocarbazolones $\mathbf{3 , 4}$ can be obtained in one stereospecific step by non-oxidative photocyclisation of tertiary aryl enaminones $\mathbf{1 , 2}{ }^{2,3}$ The presence of a keto group on these compounds allows the introduction of appropriate R^{3} substituents via carbanionic intermediates. The reaction is regio- and stereoselective; it leads exclusively to 4 a-substituted compounds $\mathbf{5 , 6}$ with a cis B / C ring junction ${ }^{2-4}$ which is the stereochemistry of the natural compounds (Scheme 1).

The reactivity of the anion which had been largely studied under alkylating conditions (KH , activated halides) ${ }^{2,3 b, 4}$ was then explored in a Michael reaction with nitroethylene ${ }^{3}$ which provided the 2 C and 1 N unit of the Aspidosperma E ring (Scheme 2).

The efficiency of this last reaction which allowed the total synthesis of N-benzyl aspidospermidine ${ }^{3}$ via compound $\mathbf{1 2}$ prompted us to investigate further the reactivity of hexahydrocarbazolones with various Michael acceptors. Moreover cyanoalkyl derivatives $\mathbf{1 3}$ and $\mathbf{1 5}$ obtained in the present study were envisaged as key intermediates in the formation of decahydropyrido $[2,3-d]$ carbazoles. These tetracyclic compounds might be

[^0]

Scheme 1 Reagents and conditions: (a) $h v$, argon; (b) KH, $\mathrm{R}^{3} \mathrm{X}$

Scheme 2 Reagents and conditions: (a) $\mathrm{LDA}, \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{NO}_{2}$
direct precursors of E-homo Aspidosperma alkaloids as octahydropyrrolo $[2,3-d]$ carbazoles are in the Aspidosperma series (Scheme 3). ${ }^{3-5}$
In the present paper we report our results on the reactivity of hexahydrocarbazolones with Michael acceptors and we describe the formation of decahydropyrido[2,3-d]carbazoles from Michael derivatives 13 and 15.

Results and discussion

Reactivity of hexahydrocarbazol-4-ones with Michael acceptors In addition to nitroethylene, ${ }^{3}$ three new reagents were studied in the reaction: acrylonitrile, methyl acrylate and methyl vinyl

E-homoaspidospermidine $n=2$ decahydropyridocarbazole
Scheme 3
ketone. Reaction of acrylonitrile with $\mathbf{3}^{2 a}$ and $7^{3 b}$ led to 4a-cyanoethyl compounds $\mathbf{1 3}$ (yield 93%) and $\mathbf{1 5}$ (yield 79\%) respectively, while 4a-methoxycarbonylethyl compound $\mathbf{1 4}$ was obtained in 74% yield from 3 and methyl acrylate (Scheme 4).

Scheme 4 Reagents and conditions: (a) LDA, $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Y}$
When methyl vinyl ketone was used as Michael acceptor with substrate 3, the expected 4a-oxobutylhexahydrocarbazolone 16 was surprisingly obtained in low yield (5%). The reaction indeed led essentially to two tetracyclic derivatives $\mathbf{1 7}$ and $\mathbf{1 8}$

17a $\alpha-\mathrm{OH}$ 17b $\beta-\mathrm{OH}$

respectively in 30 and 26% yield. Compound $\mathbf{1 7}$ was obtained as an inseparable mixture of $\mathbf{C}-12$ epimers $\mathbf{1 7 a}, \mathbf{b}(60: 40)$ resulting from an intramolecular cyclisation of the C-3 carbanion of $\mathbf{1 6}$ onto the C-12 carbonyl group. Compound $\mathbf{1 8}$ was obtained
essentially as one diastereoisomer. Its formation involved two successive alkylations leading to the presumed intermediate 19 followed by intramolecular cyclisation of the $\mathrm{C}-14$ carbanion onto the C-4 carbonyl group. In contrast, reaction of $\mathbf{3}$ with the methyl iodide salt of the methyl vinyl ketone Mannich base $\left[\mathrm{MeEt}_{2} \mathrm{~N}^{+}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CO}-\mathrm{CH}_{3}, \mathrm{I}^{-}\right],{ }^{6}$ known to be an excellent masked Michael acceptor, ${ }^{7}$ afforded the 4 a-oxobutylhexahydrocarbazolone 16 in good yield (65%).

The structure, stereochemistry and conformation of derivatives $13-18$ were established from IR, 1D NMR (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$), and for 17 and 18, 2D NMR (COSY ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$) spectral data which allowed identification of all hydrogens and carbons.

The cis stereochemistry of hexahydrocarbazolones 13-16 was supported by the data in agreement with previous results. ${ }^{2}$ In particular, the cis compounds were characterized by: (i) a carbonyl adsorption at $1690-1705 \mathrm{~cm}^{-1}$ in the IR spectra, (ii) an AB pattern for the $\mathrm{NCH}_{2} \mathrm{Ph}$ methylene in the ${ }^{1} \mathrm{H}$ NMR spectra, (iii) a signal at $\delta_{\mathrm{C}} 209.5-214.6$ for $\mathrm{CO}-4$ in the ${ }^{13} \mathrm{C}$ NMR spectra. The corresponding data for the trans compounds were respectively $v_{\mathrm{CO}} 1715-1720 \mathrm{~cm}^{-1}$, a singlet for $\mathrm{NCH}_{2} \mathrm{Ph}$ and δ_{C} 206-209 (CO-4). ${ }^{2 b}$

Compounds 17 and 18 exhibited an OH band $\left(v_{\max } 3600\right.$ cm^{-1}) in addition to the expected CO band in the IR spectrum. In the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 7 a}, \mathbf{b}$, deshielding of the methyl group $[\delta 1.33$ (17a) or $1.30(\mathbf{1 7 b})]$ compared to its chemical shift in 16 (δ 2.06) indicated the absence of an α-carbonyl function while in the ${ }^{13} \mathrm{C}$ NMR spectra a new quaternary carbon characteristic of a C-OH link appeared at $\delta 58.6(\mathbf{1 7 a})$ or 58.3 (17b). The mixture of $\mathbf{1 7 a , b}$ also showed in the ${ }^{1} \mathrm{H}$ NMR spectrum a doublet of doublets at $\delta 3.97$ for the $9 \mathrm{a}-\mathrm{H}$ proton and exhibited an identical pattern for $3-\mathrm{H}$ at $\delta 2.50(\mathbf{1 7 a})$ or $2.65(\mathbf{1 7 b})$. Those data indicate that both isomers possess the same C / D ring junction which should be cis as shown by molecular models. Consequently, they differ from one another by the stereochemistry at C-12 which could be established by analysis of their ${ }^{13} \mathrm{C}$ NMR spectra. Thus the β-axial configuration of the hydroxy group (17b) could be established by virtue of (i) shielding of the $\mathrm{C}-12$ carbon bearing the axial OH substituent $(\Delta \delta-2.8),{ }^{8 a}$ (ii) shielding of carbon $\mathrm{C}-2(\Delta \delta-2.0)$ owing to the γ gauche effect of the $12-\mathrm{Me}$ group ${ }^{8 b}$ and (iii) deshielding of the CO carbon $(\Delta \delta+0.9)$ due to an intramolecular hydrogen bond between the CO oxygen and the $\beta-\mathrm{OH}$ hydrogen. ${ }^{8 c}$

Tetracyclic compound 18 showed: (i) in the ${ }^{13} \mathrm{C}$ NMR spectrum, two CO resonances at $\delta 214.9$ and 209.8 , three non aromatic CHs at $\delta 47.3(\mathrm{C}-11), 50.9(\mathrm{C}-14)$ and $62.7(\mathrm{C}-9 \mathrm{a})$ and a quaternary carbon at $\delta 73.8(\mathrm{C}-\mathrm{OH})$, (ii) in the ${ }^{1} \mathrm{H}$ NMR spectrum, two methyl groups (MeCO) at $\delta 2.16$ and 2.21 , an OH hydrogen at $\delta 4.30$ and a $5-\mathrm{H}$ aromatic proton at $\delta 7.80$ whose deshielding is probably due to the proximity of the OH group. Additionally, the sequence $10-\mathrm{H}_{\mathrm{ax}}, 11-\mathrm{H}, 13-\mathrm{H}_{\mathrm{ax}}, 14-\mathrm{H}$ deduced from a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment exhibits large coupling constants ($J \approx 13.0$), showing the axial configuration of the $11-\mathrm{H}$ and $14-\mathrm{H}$ hydrogens. An axial configuration may also be attributed to $9 \mathrm{a}-\mathrm{H}$ from its coupling constants ($J 9.5$ and 6.0). These data are in agreement with C and D ring chair conformations. Moreover, in the NOE difference spectrum, irradiation of $9 \mathrm{a}-\mathrm{H}(\delta 3.47)$ led to a nuclear Overhauser effect on $11-\mathrm{H}_{\mathrm{ax}}$ $(\delta 2.49,12 \%)$ and on $14-\mathrm{H}_{\mathrm{ax}}(\delta 2.43,5 \%)$. Such effects indicate the α-position of the three hydrogens $9 \mathrm{a}-\mathrm{H}, 11-\mathrm{H}$ and $14-\mathrm{H}$ in a C/D cis ring junction. Distances of $9 \mathrm{a}-\mathrm{H}-11-\mathrm{H} \approx 2.5 \AA$ and $9 \mathrm{a}-\mathrm{H}-14-\mathrm{H} \approx 5.5 \AA$, which can be approximately measured on molecular models, agree with the observed NOE differences. The reasonable stability of $\mathbf{1 8}$ compared to its possible isomers at $\mathrm{C}-4, \mathrm{C}-11$ and $\mathrm{C}-14$ is probably due to the existence of intramolecular hydrogen bonds between (i) $5-\mathrm{H}$ and the OH oxygen and (ii) the OH proton and the $\mathrm{CO}-15$ oxygen.

Formation of decahydropyrido[2,3- d]carbazoles

Access to these compounds was envisaged from cyanohexa-
hydrocarbazolones $\mathbf{1 3}$ and $\mathbf{1 5}$ by reductive cyclisation which would lead directly to tetracyclic amines. The reaction could give two $\mathrm{C}-4 \mathrm{a}$ epimers. Preponderant formation of one isomer required stereochemical control of the reaction.

The reduction was performed in EtOH by catalytic hydrogenation with platinum oxide. ${ }^{3 b, 9}$ It afforded a single compound in both cases i.e. amine 20 (80%) from 13 and amine 21 (62%) from 15. For easier purification amine 20 was transformed in acetamide 22.

$20 R^{1}=R^{2}=H ; R^{3}=H$ $21 R^{1}=R^{2}=\mathrm{Me} ; \mathrm{R}^{3}=\mathrm{H}$ $22 R^{1}=R^{2}=H ; R^{3}=A c$

$20 R^{1}=R^{2}=H$
$21 R^{1}=R^{2}=M e$

Amines 20 and 21 were characterized in the ${ }^{13} \mathrm{C}$ NMR spectrum by a new $\mathrm{CH}-4 \mathrm{a}$ signal at $\delta 57.3$ and 67.9 respectively while the CO moiety of $\mathbf{1 3}$ and $\mathbf{1 5}$ disappeared. Additionally, in the ${ }^{1} \mathrm{H}$ NMR spectrum, strong deshielding of $12-\mathrm{H}[\delta 7.80$ (20) and 8.20 (21)] implied the proximity of the $\mathrm{N}-4$ lone pair in a C/E trans ring junction. ${ }^{3 b, 4 a}$ This stereochemistry is confirmed (i) for compound 21, by observation of a nuclear Overhauser effect (3%) between $4 \mathrm{a}-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H}$; an effect which is only possible in a trans ring junction, (ii) for compound 22, by the ${ }^{13} \mathrm{C}$ chemical shift of the COMe group ($\delta 25.2$) which is in agreement with previously reported data of the C/E trans octahydropyrrolocarbazole series (δ 24.7-24.9) while weaker values ($\delta 22.0-23.1$) were observed in the cis series. ${ }^{3 b}$ Moreover the coupling constants of the 7a-H hydrogen in compounds 21 ($J 8.5$ and 5.0) and 22 ($J 11.5$ and 5.0) and of hydrogen 4a-H in compound 22 ($J 10.0$ and 5.0) provide further information about the conformations. The observed values are consistent with an axial position for protons $7 \mathrm{a}-\mathrm{H}$ and $4 \mathrm{a}-\mathrm{H}$ and a chair conformation for the C and E rings. Exclusive formation of the C/E trans isomers outlines the difference between the two series: decahydropyridocarbazole and octahydropyrrolocarbazole. Indeed in this last series, preponderant formation of C/E cis compounds was previously observed. ${ }^{3 b}$ Consequently, the obtained results in both tetracyclic series agree with the higher stability of the trans stereochemistry in 9-methyl decalins and the cis stereochemistry in 8 -methyl hydrindanes respectively, ${ }^{10}$ this in spite of (i) a fused indole system and (ii) a N heteroatom in the E ring, both factors which might have considerably modified the theoretical cis-trans energy difference.

Conclusions

The present paper outlines the high reactivity of hexahydrocarbazolones with Michael acceptors. In addition to the nitroethylene already studied, ${ }^{3}$ acrylonitrile, methyl acrylate and the Mannich base of methyl vinyl ketone led to 4a-substituted compounds 13-16 in good yields ($65-93 \%$). In contrast, unexpected tetracyclic cabazoles $\mathbf{1 7}$ and 18, formation of which involved successive di- or tri-alkylations, were obtained with methyl vinyl ketone itself. Reductive cyclisation of 4a-(cyanoethyl)hexahydrocarbazolones $\mathbf{1 3}$ and 15, afforded decahydro-pyrido[2,3-d]carbazoles 20 and 21. The reaction was stereospecific and gave exclusively isomers with a C/E trans ring junction. Those tetracyclic derivatives may be considered as model compounds and key intermediates in an approach to the 4a-epi E-homo Aspidosperma series.

Experimental

Organic layers were dried over MgSO_{4}. Thin layer chromatography was performed with Merck silica gel 60 F254 and flash column chromatography was carried out with Merck silica gel $0.040-0.063 \mathrm{~mm}$. Melting points were taken on a Reichert hot-stage microscope and are uncorrected. Infrared spectra were run on a Perkin-Elmer 377 and 881 spectrophotometers. Mass spectra were measured on a Varian CH5 or on a Varian VG 30 F apparatus. ${ }^{13} \mathrm{C}$ NMR Spectra were recorded on JEOL FX60, Bruker MSL 300 or Bruker AC 400 spectrometers and ${ }^{1} \mathrm{H}$ NMR spectra on Bruker MSL 300 or Bruker AC 400 instruments (δ values are given in ppm and J values in Hz). The applied pulse sequence was $(\pi / 2),\left(t_{1}\right),(\pi / 4)$, (FID, t_{2}) for the ${ }^{1} \mathrm{H}$ COSY spectra and $\left(\pi / 2,{ }^{1} \mathrm{H}\right),\left(t_{1} / 2\right),\left(\pi,{ }^{13} \mathrm{C}\right),\left(t_{1} / 2\right),\left(\tau_{1}\right),(\pi / 2$, $\left.{ }^{1} \mathrm{H}, \pi / 2,{ }^{13} \mathrm{C}\right),\left(\tau_{2}\right),\left(\mathrm{BB},{ }^{1} \mathrm{H}\right.$; FID, $\left.t_{2}\right)$ with $\tau_{1}=0.0035 \mathrm{~s}$ and $\tau_{2}=0.00175 \mathrm{~s}$ for the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectra. Homonuclear Overhauser effects were generated by presaturating selected proton signals with a low power 4 s decoupler pulse. NOE Difference spectra were obtained by subtracting alternately right-off resonance-free induction decays (FIDs) from right-on resonance-induced FIDs.

cis-4a-(2-Cyanoethyl)-9-benzyl-2,3,4,4a,9,9a-hexahydro-1 H -carbazol-4-one 13

To a solution of LDA $(1.3 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ [prepared from diisopropylamine ($131 \mathrm{mg}, 182 \mathrm{~mm}^{3}, 1.3 \mathrm{mmol}$), THF ($2 \mathrm{~cm}^{3}$) and n-butyllithium ($870 \mathrm{~mm}^{3}, 1.3 \mathrm{mmol}, 1.5 \mathrm{~m}$ in hexane)] was slowly added under argon a solution of hexahydrocarbazolone $3(277 \mathrm{mg}, 1 \mathrm{mmol})$ in THF ($5 \mathrm{~cm}^{3}$) and after 30 min HMPA ($269 \mathrm{mg}, 261 \mathrm{~mm}^{3}, 1.5 \mathrm{mmol}$). The mixture was stirred at this temperature for a further 50 min , allowed to warm up to $-50^{\circ} \mathrm{C}$ and cooled again to $-78^{\circ} \mathrm{C}$. A solution of acrylonitrile ($63 \mathrm{mg}, 79 \mathrm{~mm}^{3}, 1.2 \mathrm{mmol}$) in THF ($1 \mathrm{~cm}^{3}$) was then added dropwise. The mixture was stirred again for 50 min at $-78{ }^{\circ} \mathrm{C}$ and allowed to warm up to $0^{\circ} \mathrm{C}$. The solvent was removed and the residue was dissolved in AcOEt. The solution was washed with brine, dried and concentrated. Flash chromatography on silica gel using $85: 15$ hexane-AcOEt as eluent afforded 13 (307 $\mathrm{mg}, 93 \%$) as white crystals, $\mathrm{mp} 75-78^{\circ} \mathrm{C}$ (from cyclohexane) (Found: C, 79.9; H, 6.9; N, 8.3. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 79.95$; $\mathrm{H}, 6.7 ; \mathrm{N}, 8.5 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2240(\mathrm{CN})$ and 1700 $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.60\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}\right), 1.80(2 \mathrm{H}, \mathrm{m}$, $2 \times 10-\mathrm{H}), 1.94\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{ax}}\right), 2.15-2.45\left(6 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{eq}}, 2-\mathrm{H}_{\mathrm{eq}}\right.$, $2 \times 3-\mathrm{H}, 2 \times 11-\mathrm{H}), 3.79(1 \mathrm{H}, \mathrm{t}, J 5.5,9 \mathrm{a}-\mathrm{H}), 4.40(2 \mathrm{H}, \mathrm{AB}$, $\left.J 15.4, \Delta v 117.0, \ddagger \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.52(1 \mathrm{H}, \mathrm{d}, J 7.8,8-\mathrm{H}), 6.69(1 \mathrm{H}$, $\mathrm{t}, J 7.4,6-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and $1.0,5-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{td}$, $J 7.8$ and $1.0,7-\mathrm{H})$ and $7.30-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(15 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 12.6(\mathrm{C}-11), 18.2(\mathrm{C}-2), 25.6(\mathrm{C}-10), 31.4(\mathrm{C}-1), 38.1$ (C-3), $49.2\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 59.5(\mathrm{C}-4 \mathrm{a}), 68.3$ (C-9a), $107.2(\mathrm{C}-8)$, 117.9 (C-6), 119.5 (CN), 123.8 (C-5), 127.4 (C-7), 127.5-129.5 (5 ArCH), 127.6 (C-4b), $137.5\left(\mathrm{C}-1{ }^{\prime}\right), 150.6(\mathrm{C}-8 \mathrm{a})$ and 209.5 (CO); m / z (EI) $330.1733\left(17 \%, \mathrm{M}^{++} . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 330.1727), 302 (11), 220 (8), 105 (11), 91 (44), 77 (12) and 43 (100).

cis-4a-[2-(Methoxycarbonyl)ethyl]-9-benzyl-2,3,4,4a,9,9a-hexa-hydro- $1 H$-carbazol-4-one 14

Compound $\mathbf{1 4}$ was prepared from hexahydrocarbazolone $\mathbf{3}$ $(277 \mathrm{mg}, 1.0 \mathrm{mmol})$ and methyl acrylate ($430 \mathrm{mg}, 450 \mathrm{~mm}^{3}, 5.0$ mmol) following the conditions described for the preparation of 13. Flash chromatography on silica gel with $90: 10$ hexaneAcOEt afforded 14 (270 mg, 74\%) as an oil (Found: C, 75.7; H, 7.1; $\mathrm{N}, 3.85 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires $\mathrm{C}, 76.0 ; \mathrm{H}, 6.95 ; \mathrm{N}, 3.85 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1740$ (CO ester) and 1705 (CO ketone); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.65\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}\right), 1.74-1.90(2 \mathrm{H}, \mathrm{m}$, $\left.2-\mathrm{H}_{\mathrm{eq}}, 1-\mathrm{H}_{\mathrm{eq}}\right), 1.96\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{ax}}\right), 2.14-2.29(4 \mathrm{H}, \mathrm{m}, 2 \times 10-\mathrm{H}$,
$\ddagger \Delta v=v_{\mathrm{A}}-v_{\mathrm{B}}$ where v_{A} and v_{B} are the resonance frequencies of the A and B protons.
$2 \times 3-\mathrm{H}), 2.31-2.47(2 \mathrm{H}, \mathrm{m}, 2 \times 11-\mathrm{H}), 3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.76$ $(1 \mathrm{H}, \mathrm{t}, J 4.8,9 \mathrm{a}-\mathrm{H}), 4.37\left(2 \mathrm{H}, \mathrm{AB}, J 15.7, \Delta v 98.3, \mathrm{NCH}_{2} \mathrm{Ph}\right)$, $6.46(1 \mathrm{H}, \mathrm{d}, J 7.8,8-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{t}, J 7.4,6-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{dd}$, $J 7.4$ and $1.0,5-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{td}, J 7.7$ and $1.0,7-\mathrm{H})$ and $7.25-$ $7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.6(\mathrm{C}-2), 25.6(\mathrm{C}-1)$, $29.8(\mathrm{C}-10), 31.2(\mathrm{C}-11), 38.5(\mathrm{C}-3), 49.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 51.6$ $\left(\mathrm{OCH}_{3}\right), 60.0(\mathrm{C}-4 \mathrm{a}), 68.6(\mathrm{C}-9 \mathrm{a}), 107.1(\mathrm{C}-8), 117.9(\mathrm{C}-6)$, 124.5 (C-5), 127.3 (C-7), 127.4-129.1 (5 ArCH), 128.7 (C-4b), 138.1 (C-1'), 151.2 (C-8a), 173.6 (CO ester) and 210.7 (CO ketone); m / z (EI) 363.1835 ($25 \% \mathrm{M}^{++} . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires 363.1828), 335 (7), 279 (13), 275 (10), 220 (8), 106 (15), 91 (100).

cis-3,3-Dimethyl-4a-(2-cyanoethyl)-9-benzyl-2,3,4,4a,9,9a-hexa-hydro- $1 H$-carbazol-4-one 15

Compound 15 was prepared from hexahydrocarbazolone 7 (305 $\mathrm{mg}, 1.0 \mathrm{mmol}$) and acrylonitrile ($63 \mathrm{mg}, 79 \mathrm{~mm}^{3}, 1.2 \mathrm{mmol}$) following the procedure described for 13. Flash chromatography on silica gel with $90: 10$ hexane-AcOEt afforded $\mathbf{1 5}$ ($283 \mathrm{mg}, 79 \%$) as an oil (Found: C, 80.5; H, 7.5; N, 7.6. $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ requires C, 80.4; $\left.\mathrm{H}, 7.3 ; \mathrm{N}, 7.8 \%\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ $2250(\mathrm{CN})$ and $1690(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.93(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me})$, $1.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.47\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}\right), 1.65-1.87(3 \mathrm{H}, \mathrm{m}$, $\left.2-\mathrm{H}_{\mathrm{eq}}, 1-\mathrm{H}_{\mathrm{ax}}, 1-\mathrm{H}_{\mathrm{eq}}\right), 2.05-2.26(4 \mathrm{H}, \mathrm{m}, 2 \times 10-\mathrm{H}, 2 \times 11-\mathrm{H})$, $3.79(1 \mathrm{H}, \mathrm{t}, J 5.0,9 \mathrm{a}-\mathrm{H}), 4.42(2 \mathrm{H}, \mathrm{AB}, J 16.0, \Delta v 84.5$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 6.48(1 \mathrm{H}, \mathrm{d}, J 7.5,8-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{t}, J 7.5,6-\mathrm{H})$, $6.86(1 \mathrm{H}, \mathrm{d}, J 7.5,5-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{t}, J 7.5,7-\mathrm{H})$ and $7.30-7.40$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.8(\mathrm{C}-11), 23.3(\mathrm{C}-2), 26.7$ $\left(\mathrm{CH}_{3}\right), 29.8\left(\mathrm{CH}_{3}\right), 32.4(\mathrm{C}-1), 33.5(\mathrm{C}-10), 44.3(\mathrm{C}-3), 49.2$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 59.3$ (C-4a), 67.8 (C-9a), 106.7 (C-8), 117.7 (C-6), 119.7 (CN), 124.4 (C-5), 127.7 (C-7), 127.6-129.7 (5 ArCH), 128.0 (C-4b), 137.9 (C-1'), 150.7 (C-8a) and 214.6 (CO); m / z (EI) $358.2045\left(18 \%, \mathrm{M}^{+}+\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 358.2039$)$, 239 (10), 220 (10), 200 (12), 130 (24), 119 (39), 105 (31), 91 (100), 77 (22), 69 (14), 57 (22), 51 (16) and 41 (33).

cis-4a-(3-Oxobutyl)-9-benzyl-2,3,4,4a,9,9a-hexahydro-1 H -carbazol-4-one 16

Compound 16 was prepared from hexahydrocarbazolone 3 $(277 \mathrm{mg}, 1.0 \mathrm{mmol})$ and the methyl iodide salt of methyl vinyl ketone Mannich base $\left[\mathrm{MeEt}_{2} \mathrm{~N}^{+}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CO}-\mathrm{CH}_{3}, \mathrm{I}^{-}\right]^{6}(855 \mathrm{mg}$, $3.0 \mathrm{mmol})$ following the conditions described for the preparation of 13. Flash chromatography on silica gel with $90: 10$ hexane-AcOEt afforded 16 ($255 \mathrm{mg}, 65 \%$) as an oil (Found: C, 79.3; H, 7.5; N, 3.95. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires C, 79.5; H, 7.25; N, $4.05 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1720(\mathrm{CO}-12)$ and $1710(\mathrm{CO}-4) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.66\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}\right), 1.74-1.91\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right.$, $\left.1-\mathrm{H}_{\mathrm{eq}}\right), 1.96\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{ax}}\right), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.07-2.20(2 \mathrm{H}$, $\mathrm{m}, 2 \times 10-\mathrm{H}), 2.31-2.44(4 \mathrm{H}, \mathrm{m}, 2 \times 3-\mathrm{H}, 2 \times 11-\mathrm{H}), 3.72(1 \mathrm{H}$, $\mathrm{t}, J 4.8,9 \mathrm{a}-\mathrm{H}), 4.38\left(2 \mathrm{H}, \mathrm{AB}, J 15.7, \Delta v 109.8, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.48$ $(1 \mathrm{H}, \mathrm{d}, J 7.8,8-\mathrm{H}), 6.69(1 \mathrm{H}, \mathrm{t}, J 7.4,6-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and $1.0,5-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{td}, J 7.7$ and $1.0,7-\mathrm{H})$ and $7.22-7.43$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.6(\mathrm{C}-2), 25.4(\mathrm{C}-1)$, $29.8\left(\mathrm{CH}_{3}\right), 29.9(\mathrm{C}-10), 38.5(\mathrm{C}-3), 39.2(\mathrm{C}-11), 49.8$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 59.9$ (C-4a), 68.7 (C-9a), 107.2 (C-8), 117.9 (C-6), 124.6 (C-5), 127.3 (C-7), 127.5-129.1 (5 ArCH), 128.9 (C-4b), 138.1 (C-1'), 151.2 (C-8a), 208.0 (CO-12) and 211.0 (CO-4); m / z (EI) $347.1886\left(86 \%, \mathrm{M}^{+} . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2}\right.$ requires 347.1885$)$, 319 (38), 276 (13), 262 (39), 248 (63), 234 (27), 220 (22), 198 (15), 170 (22), 130 (10) and 91 (100).
cis,cis-12-Hydroxy-12-methyl-3,4a-propano-9-benzyl-2,3,4,4a, 9,9a-hexahydro-1 H -carbazol-4-ones $17 \mathrm{a}, \mathrm{b}$ and $\left(2 S^{*}, 4 R^{*}, 4 \mathrm{a} R^{*}\right.$, 7a $R^{*}, 12 \mathrm{~b} R^{*}$)-2,4-diacetyl-8-benzyl-4a-hydroxy-1,2,3,4,4a,5,6, 7,7a,8-decahydrobenzo[d]carbazole 18 §
Compounds $17 \mathrm{a}, \mathrm{b}$ and 18 were prepared from hexahydrocarb-

[^1]azolone 3 ($277 \mathrm{mg}, 1.0 \mathrm{mmol}$) and methyl vinyl ketone (105 mg , $122 \mathrm{~mm}^{3}, 1.5 \mathrm{mmol}$) following the procedure described for $\mathbf{1 3}$. Flash chromatography on silica gel with $90: 10$ and $70: 30$ hexane-AcOEt afforded respectively 18 ($108 \mathrm{mg}, 26 \%$) and $\mathbf{1 7 a}, \mathbf{b}(104 \mathrm{mg}$, ratio $60: 40,30 \%$). Both isomers 17a and 17b showed identical R_{f} values after elutions and could not be separated. The spectroscopic data of each isomer were assigned from the mixture. 17a: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.38\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{ax}}\right), 1.63\left(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{B}}\right), 1.66\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}\right)$, $1.90\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{B}}\right), 2.02\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{eq}}\right), 2.11\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right)$, $2.12\left(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{A}}\right), 2.45\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{A}}\right), 2.50(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $2.5,3-\mathrm{H}), 3.97(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $5.0,9 \mathrm{a}-\mathrm{H}), 4.38(2 \mathrm{H}$, $\left.\mathrm{AB}, J 16.5, \Delta v 41.3, \mathrm{NC} H_{2} \mathrm{Ph}\right), 6.38(1 \mathrm{H}, \mathrm{d}, J 7.8,8-\mathrm{H}), 6.74$ ($1 \mathrm{H}, \mathrm{td}, J 7.4$ and $1.0,6-\mathrm{H}), 7.09(1 \mathrm{H}, \mathrm{td}, J 7.8$ and $1.0,7-\mathrm{H}$), $7.15(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and $1.0,5-\mathrm{H})$ and $7.25-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.0(\mathrm{C}-2), 27.2(\mathrm{C}-1), 28.1\left(\mathrm{CH}_{3}\right), 29.8$ (C-11), $36.6(\mathrm{C}-10), 50.8\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 57.4(\mathrm{C}-3), 58.6(\mathrm{C}-4 \mathrm{a})$, 71.9 (C-9a), 78.8 (C-12), 106.2 (C-8), 117.2 (C-6), 126.1 (C-5), 127.1 (C-7), 127.0-128.9 (5 ArCH), 127.9 (C-4b), 138.8 (C-1'), 150.7 (C-8a) and $212.3(\mathrm{CO}) . \mathbf{1 7 b}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27$ $\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{ax}}\right), 1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.63\left(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{B}}\right), 1.90$ $\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{B}}\right), 1.97\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}\right), 2.02\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{eq}}\right), 2.12$ $\left(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{A}}\right), 2.13\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right), 2.42\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{A}}\right)$, $2.65(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $2.5,3-\mathrm{H}), 3.97(1 \mathrm{H}$, dd, $J 10.5$ and 5.0 , $9 \mathrm{a}-\mathrm{H}), 4.39\left(2 \mathrm{H}, \mathrm{AB}, J 16.6, \Delta v 43.7, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.38(1 \mathrm{H}, \mathrm{d}$, $J 7.8,8-\mathrm{H}), 6.73(1 \mathrm{H}, \operatorname{td}, J 7.4$ and $1.0,6-\mathrm{H}), 7.05(1 \mathrm{H}$, dd, $J 7.4$ and $1.0,5-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{td}, J 7.8$ and $1.0,7-\mathrm{H})$ and 7.24 $7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.0(\mathrm{C}-2), 27.0(\mathrm{C}-1)$, $27.6\left(\mathrm{CH}_{3}\right), 30.8(\mathrm{C}-11), 35.4(\mathrm{C}-10), 50.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 57.9$ (C-3), 58.3 (C-4a), 72.1 (C-9a), 76.0 (C-12), 106.2 (C-8), 117.3 (C-6), 125.9 (C-5), 127.1 (C-7), 127.0-128.9 (5 ArCH), 127.2 (C-4b), 138.7 (C-1'), 150.8 (C-8a) and 213.2 (CO).

17a,b (ratio $60: 40$): pale yellow foam; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3600$ $(\mathrm{OH}), 1725$ and $1710(\mathrm{CO}) ; \mathrm{m} / \mathrm{z}$ (EI) 347.1886 ($100 \% \mathrm{M}^{\cdot+}$. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires 347.1885), 319 (29), 276 (53), 248 (22), 234 (15), 220 (20), 170 (14), 130 (15), 91 (90), 69 (21), 57 (19), 43 (27). 18: white crystals, $\mathrm{mp} 175-178^{\circ} \mathrm{C}$ (from cyclohexaneAcOEt) (Found: C, 77.2; H, 7.6; N, 3.2. $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{3}$ requires C, $77.65 ; \mathrm{H}, 7.5 ; \mathrm{N}, 3.35 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3500(\mathrm{OH})$ and 1705 (CO); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20\left(1 \mathrm{H}, \mathrm{qt}, J 13.0\right.$ and $\left.3.0,2-\mathrm{H}_{\mathrm{ax}}\right)$, $1.25\left(1 \mathrm{H}, \operatorname{tdd}, J 13.0,9.5\right.$ and $\left.4.0,1-\mathrm{H}_{\mathrm{ax}}\right), 1.53-1.65(2 \mathrm{H}, \mathrm{m}$, $\left.2-\mathrm{H}_{\mathrm{eq}}, 3-\mathrm{H}_{\mathrm{ax}}\right), 1.75-1.89\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{eq}}, 1-\mathrm{H}_{\mathrm{eq}}\right), 1.79(1 \mathrm{H}, \mathrm{dt}$, $J 13.0$ and $\left.3.0,13-\mathrm{H}_{\mathrm{eq}}\right), 1.88\left(1 \mathrm{H}, \mathrm{t}, J 13.0,10-\mathrm{H}_{\mathrm{ax}}\right), 2.08(1 \mathrm{H}$, $\left.\mathrm{q}, J 13.0,13-\mathrm{H}_{\mathrm{ax}}\right), 2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.25(1 \mathrm{H}$, dd, $J 13.0$ and $\left.3.0,10-\mathrm{H}_{\mathrm{eq}}\right), 2.49\left(1 \mathrm{H}, \mathrm{tt}, J 13.0\right.$ and $\left.3.0,11-\mathrm{H}_{\mathrm{ax}}\right)$, $2.93\left(1 \mathrm{H}, \mathrm{dd}, J 13.0\right.$ and $\left.3.0,14-\mathrm{H}_{\mathrm{ax}}\right), 3.47(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $6.0,9 \mathrm{a}-\mathrm{H}), 4.26\left(2 \mathrm{H}, \mathrm{AB}, J 14.5, \Delta v 196.6, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.30$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.48(1 \mathrm{H}, \mathrm{d}, J 7.7,8-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{t}, J 7.4,6-\mathrm{H})$, $7.10(1 \mathrm{H}, \mathrm{td}, J 7.7$ and $1.0,7-\mathrm{H}), 7.32-7.46(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.80(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and $1.0,5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.0$ (C-2), $24.5(\mathrm{C}-1), 26.0(\mathrm{C}-13), 27.7\left(\mathrm{CH}_{3}\right), 31.6\left(\mathrm{CH}_{3}\right), 32.5$ (C-10), $34.0(\mathrm{C}-3), 47.3(\mathrm{C}-11), 48.2\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 50.9(\mathrm{C}-14)$, 53.0 (C-4a), 62.7 (C-9a), 73.8 (C-4), 107.9 (C-8), 118.6 (C-6), 126.8 (C-5), 127.4 (C-7), 127.6-128.6 (5 ArCH), 134.8 (C-4b), 138.5 (C-1'), 148.9 (C-8a), 209.8 (CO-12) and 214.9 (CO-15); m / z (EI) $417.2304\left(66 \%, \mathrm{M}^{+} . \mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{3}\right.$ requires 417.2304), 399 (44), 387 (12), 290 (11), 276 (19), 262 (20), 248 (30), 234 (17), 220 (49), 198 (15), 170 (17), 130 (15), 91 (100), 43 (18).

8-Benzyl-1,2,3,4,4a,5,6,7,7a,8-decahydropyrido[2,3-d]carbazole 20

A solution of hexahydrocarbazolone 13 ($231 \mathrm{mg}, 0.70 \mathrm{mmol}$) in $\mathrm{EtOH}\left(21 \mathrm{~cm}^{3}\right)$ was hydrogenated at room temperature for 4 days under 3 atm of pressure (Parr apparatus) in the presence of $\mathrm{PtO}_{2}(20 \mathrm{mg})$. The catalyst was removed by filtration through Celite and the filtrate was concentrated. Chromatography on alumina with 20:80 hexane-AcOEt afforded amine $\mathbf{2 0}(178 \mathrm{mg}$, 80%) as an amorphous solid; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3370(\mathrm{NH})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 0.92-2.00(10 \mathrm{H}, \mathrm{m}, 2 \times 1-\mathrm{H}, 2 \times$ $2-\mathrm{H}, 2 \times 5-\mathrm{H}, 2 \times 6-\mathrm{H}, 2 \times 7-\mathrm{H}), 2.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.20-3.50$
($4 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-\mathrm{H}, 7 \mathrm{a}-\mathrm{H}, 2 \times 3-\mathrm{H}), 4.24(2 \mathrm{H}, \mathrm{AB}, J 15.0, \Delta v 67.0$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 6.40(1 \mathrm{H}, \mathrm{d}, J 7.5,9-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{t}, J 7.5,11-\mathrm{H})$, $7.04(1 \mathrm{H}, \mathrm{t}, J 7.5,10-\mathrm{H}), 7.23-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.80 $\left.(1 \mathrm{H}, \mathrm{d}, J 7.5,12-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz},{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 18.5(\mathrm{C}-6)$, 20.3 (C-2), 24.1 (C-7), 25.3 (C-5), 33.2 (C-1), 43.3 (C-3), 47.5 (C-12b), $47.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 57.3$ (C-4a), 69.6 (C-7a), $107.8(\mathrm{C}-9)$, 116.6 (C-11), 125.6 (C-12), 126.9 (C-10), 127.3-128.4 (5 ArCH), 129.9 (C-12a), 138.6 (C-1') and 150.2 (C-8a); m / z (EI) 318.2094 ($53 \%, \mathrm{M}^{\cdot+} . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2}$ requires 318.2090), 247 (17), 234 (21), 117 (19), 91 (100), 87 (22), 57 (39) and 47 (64).

5,5-Dimethyl-8-benzyl-1,2,3,4,4a,5,6,7,7a,8-decahydropyrido-[2,3- d] carbazole 21

This compound was prepared from dimethylcyanohexahydrocarbazolone $15(179 \mathrm{mg}, 0.5 \mathrm{mmol})$ following the procedure described for 20. Chromatography on alumina with $50: 50$ hexane-AcOEt afforded amine $21(107 \mathrm{mg}, 62 \%)$ as an amorphous solid; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3360(\mathrm{NH}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.20-1.90(6 \mathrm{H}, \mathrm{m}$, $2 \times 2-\mathrm{H}, 2 \times 6-\mathrm{H}, 2 \times 7-\mathrm{H}), 2.16(2 \mathrm{H}, \mathrm{m}, 2 \times 1-\mathrm{H}), 3.00(1 \mathrm{H}, \mathrm{s}$, $4 \mathrm{a}-\mathrm{H}), 3.14\left(1 \mathrm{H}, \mathrm{td}, J 12.5\right.$ and $\left.2.5,3-\mathrm{H}_{\mathrm{ax}}\right), 3.24(1 \mathrm{H}$, dd, $J 8.5$ and $5.0,7 \mathrm{a}-\mathrm{H}), 3.93\left(1 \mathrm{H}, \mathrm{dt}, J 12.5\right.$ and $\left.1.5,3-\mathrm{H}_{\text {eq }}\right), 4.30(2 \mathrm{H}$, $\left.\mathrm{AB}, J 15.0, \Delta v 98.5, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.42(1 \mathrm{H}, \mathrm{d}, J 7.5,9-\mathrm{H}), 6.83$ $(1 \mathrm{H}, \mathrm{t}, J 7.5,11-\mathrm{H}), 7.09(1 \mathrm{H}, \mathrm{t}, J 7.5,10-\mathrm{H}), 7.30-7.37(5 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$ and $8.20(1 \mathrm{H}, \mathrm{d}, J 7.5,12-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $18.9(\mathrm{C}-6), 21.5(\mathrm{C}-2), 21.6\left(\mathrm{CH}_{3}\right), 31.3\left(\mathrm{CH}_{3}\right), 34.2(\mathrm{C}-7), 36.2$ (C-1), 37.0 (C-5), 46.8 (C-3), 47.5 (C-12b), $48.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 67.9$ (C-4a), 70.8 (C-7a), 107.4 (C-9), 117.9 (C-11), 127.3 (C-12), 127.6 (C-10), 127.6-128.1 (5 ArCH), 130.2 (C-12a), 138.3 (C-1') and 149.5 (C-8a); m/z (EI) 346.2411 ($92 \%, \mathrm{M}^{++}$. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2}$ requires 346.2402), 290 (29), 275 (10), 255 (11), 247 (17), 234 (22), 221 (11), 91 (100), 87 (17), 43 (22).

21 Hydrochloride: HCl treatment of an analytical sample of a solution of $\mathbf{2 1}$ afforded the hydrochloride salt as white crystals, mp 196-199 ${ }^{\circ} \mathrm{C}$ (from MeOH-diethyl ether) (Found: C, $75.55 ; \mathrm{H}, 7.9 ; \mathrm{N}, 7.35 ; \mathrm{Cl}, 9.45 . \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{Cl}$ requires C, 75.25 ; $\mathrm{H}, 8.15 ; \mathrm{N}, 7.3 ; \mathrm{Cl}, 9.25 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3440(\mathrm{NH}), 2760$, 2740 and $1585\left({ }^{+} \mathrm{NH}_{2}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.75(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.15-1.90\left(7 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{ax}}, 2 \times 2-\mathrm{H}, 2 \times 6-\mathrm{H}\right.$, $2 \times 7-\mathrm{H}), 2.07\left(1 \mathrm{H}, \mathrm{dt}, J 12.0\right.$ and $\left.3.3,1-\mathrm{H}_{\mathrm{eq}}\right), 2.49(1 \mathrm{H}, \mathrm{s}$, $4 \mathrm{a}-\mathrm{H}), 2.78\left(1 \mathrm{H}, \mathrm{t}, J 11.5,3-\mathrm{H}_{\mathrm{ax}}\right), 3.12(1 \mathrm{H}$, dd, $J 10.0$ and 5.5 , $7 \mathrm{a}-\mathrm{H}), 3.32\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{eq}}\right), 4.27(2 \mathrm{H}, \mathrm{AB}, J 15.2, \Delta v 112.5$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 6.33(1 \mathrm{H}, \mathrm{d}, J 7.5,9-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{t}, J 7.5,11-\mathrm{H})$, $7.02(1 \mathrm{H}, \mathrm{t}, J 7.5,10-\mathrm{H}), 7.26-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.83 ($1 \mathrm{H}, \mathrm{d}, J 7.5,12-\mathrm{H}$)

4-Acetyl-8-benzyl-1,2,3,4,4a,5,6,7,7a,8-decahydropyrido[2,3-d]carbazole 22

To a solution of amine $\mathbf{2 0}$ ($127 \mathrm{mg}, 0.40 \mathrm{mmol}$), $\mathrm{NEt}_{3}(45 \mathrm{mg}$, $60 \mathrm{~mm}^{3}, 0.44 \mathrm{mmol}$) and DMAP (catalytic amount) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise, under nitrogen, a solution of acetyl chloride ($35 \mathrm{mg}, 31 \mathrm{~mm}^{3}, 0.44 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ cm^{3}). After the addition was complete, the solution was stirred for 3 h and then washed with brine. The organic layer was dried
and concentrated. Flash chromatography on silica gel with $70: 30$ hexane-AcOEt afforded acetamide $22(101 \mathrm{mg}, 70 \%)$ as an amorphous solid (Found: C, 79.8; H, 7.95; N, 7.4. $\mathrm{C}_{24} \mathrm{H}_{28}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 79.95 ; \mathrm{H}, 7.85 ; \mathrm{N}, 7.75 \%\right)$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1640$ (CO); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.85-2.35(10 \mathrm{H}, \mathrm{m}, 2 \times 1-\mathrm{H}, 2 \times$ $2-\mathrm{H}, 2 \times 5 \mathrm{H}, 2 \times 6 \mathrm{H}, 2 \times 7-\mathrm{H}), 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.98(1 \mathrm{H}$, td, $J 13.5$ and $\left.2.5,3-\mathrm{H}_{\mathrm{ax}}\right), 3.20(1 \mathrm{H}$, dd, $J 10.0$ and $5.0,4 \mathrm{a}-\mathrm{H})$, $3.30(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $5.0,7 \mathrm{a}-\mathrm{H}), 4.26(1 \mathrm{H}, \mathrm{br}$ d, $J 13.5$, $\left.3-\mathrm{H}_{\mathrm{eq}}\right), 4.27\left(2 \mathrm{H}, \mathrm{AB}, J 15.0, \Delta v 89.0, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.39(1 \mathrm{H}, \mathrm{d}$, $J 7.8,9-\mathrm{H}), 6.68(1 \mathrm{H}, \operatorname{td}, J 7.5$ and $1.0,11-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{td}$, $J 7.8$ and $1.0,10-\mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $1.0,12-\mathrm{H})$ and 7.30-7.40 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 23.1(\mathrm{C}-2$ and C-6), 24.7 (C-7), $25.2\left(\mathrm{CH}_{3}\right)$, $28.8(\mathrm{C}-5), 38.4(\mathrm{C}-1), 48.9(\mathrm{C}-3)$, 49.6 (C-12b), 50.0 ($\mathrm{NCH}_{2} \mathrm{Ph}$), 66.3 (C-4a), 71.8 (C-7a), 107.7 (C-9), 117.6 (C-11), 125.6 (C-12), 127.1 (C-10), 127.7-128.6 (5 ArCH), 131.8 (C-12a), 138.7 (C-1'), 150.6 (C-8a) and 169.8 (CO); m/z (EI) $360.2201\left(11 \%, \mathrm{M}^{+} . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 360.2194), 270 (10), 234 (10), 220 (10), 198 (12), 183 (12), 170 (26), 156 (15), 143 (24), 130 (29), 115 (14), 91 (94), 77 (11), 70 (14), 57 (17), 43 (100).

References

1 A. Brossi and M. Suffness, in The Alkaloids, Antitumor Bisindole Alkaloids from Catharanthus Roseus, Academic Press, San Diego, 1990, vol. 37; P. L. Feldman and H. Rapoport, J. Am. Chem. Soc., 1987, 109, 1603 and references cited therein; P. Magnus, M. Ladlow and J. Elliot, J. Am. Chem. Soc., 1987, 109, 7929; J. D. Phillipson and M. H. Zenk, in Indole and Biogenetically Related Alkaloids, Academic Press, New York, 1980.
2 (a) J.-C. Gramain, Y. Troin and H.-P. Husson, J. Heterocycl. Chem., 1988, 25, 201; (b) D. Dugat, J.-C. Gramain and G. Dauphin, J. Chem. Soc., Perkin Trans. 2, 1990, 605.

3 (a) N. Benchekroun-Mounir, D. Dugat and J.-C. Gramain, Tetrahedron Lett., 1992, 33, 4001; (b) N. Benchekroun-Mounir, D. Dugat, J.-C. Gramain and H.-P. Husson, J. Org. Chem., 1993, 58, 6457.

4 (a) J.-C. Gramain, H.-P. Husson and Y. Troin, J. Org. Chem., 1985, 50, 5517; (b) D. Gardette, J.-C. Gramain and M.-E. Sinibaldi, Heterocycles, 1990, 31, 1439; (c) M. Dufour, J.-C. Gramain, H.-P. Husson, M.-E. Sinibaldi and Y. Troin, J. Org. Chem., 1990, 55, 5483
5 L. E. Overman and S. R. Angle, J. Org. Chem., 1985, 50, 4021.
6 For preparation see: E. C. Du Feu, F. J. McQuillin and R. Robinson, J. Chem. Soc., 1937, 53.

7 F. F. Blicke, Org. React., 1965, 303.
8 J. B. Stothers, in ${ }^{13} C$ NMR Spectroscopy, Academic Press, New York, 1972, vol. 24, (a) pp. 412 and 413; (b) p. 65; (c) p. 288.
9 M. Hudlicky, in Reductions in Organic Chemistry, Wiley, New York, 1984, p. 135; E. M. Hancock and A. C. Cope, Org. Synth., 1955, 501.
10 E. Eliel and S. H. Wilen, in Stereochemistry of Organic Compounds, Wiley, New York, 1994, pp. 774-780; M. Hanack, in Conformation Theory, Academic Press, New York, 1965, pp. 176 and 200.

Paper 8/02620C
Received 6th April 1998
Accepted 19th May 1998

[^0]: \dagger The ABCDE Aspidosperma ring nomenclature has been kept for tetracyclic compounds 20,21 and $\mathbf{2 2}$.

[^1]: § The IUPAC numbering system has been used to name this compound. However, for the purposes of describing the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, the numbering scheme shown in the structural representation of 18 has been used.

